19 research outputs found

    Femtosecond two-photon photoassociation of hot magnesium atoms: A quantum dynamical study using thermal random phase wavefunctions

    Full text link
    Two-photon photoassociation of hot magnesium atoms by femtosecond laser pulses, creating electronically excited magnesium dimer molecules, is studied from first principles, combining \textit{ab initio} quantum chemistry and molecular quantum dynamics. This theoretical framework allows for rationalizing the generation of molecular rovibrational coherence from thermally hot atoms [L. Rybak \textit{et al.}, Phys. Rev. Lett. {\bf 107}, 273001 (2011)]. Random phase thermal wave functions are employed to model the thermal ensemble of hot colliding atoms. Comparing two different choices of basis functions, random phase wavefunctions built from eigenstates are found to have the fastest convergence for the photoassociation yield. The interaction of the colliding atoms with a femtosecond laser pulse is modeled non-perturbatively to account for strong-field effects

    Ageism in the third age

    Get PDF
    In the developed world, later life has brought more opportunities to contribute to society and pursue personal goals outside the role of paid work, combined with less stigma and greater recognition of the worth of older people. These values do not necessarily extend to the “oldest old” where some people in the fourth age (people 80 years old and over) continue to face increasing stigma and societal stereotypes from those in the third age (people 60–79 years old). Ageism between these two cohorts is rarely discussed in the literature. Potential ageism involves stereotypical perceptions of the oldest old and may prove detrimental to those transitioning from the third to the fourth age if a resultant resistance to maintain their engagement and independence into older age occurs. This chapter explores the subtleties of these inter-cohort ageist discourses particularly from a health and social care perspective and considers the implications for transitions of older people between the third and fourth age. It addresses the challenges and adjustments needed to ensure continuing and inclusive engagement in society, in order to support independence to grow old without the fear of discrimination

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    demonstration of final-state branching ratio control

    Get PDF
    Quantum coherent control of ultrafast bond making and the subsequent molecular dynamics is crucial for the realization of a new photochemistry, where a shaped laser field is actively driving the chemical system in a coherent way from the thermal initial state of the reactants to the final state of the desired products. We demonstrate here coherent control over the relative yields of Mg2 molecules that are generated via photoassociation and subsequently photodriven into different groups of final states. The strong-field process involves non-resonant multiphoton femtosecond photoassociation of a pair of thermally hot magnesium atoms into a bound Mg2 molecule and subsequent molecular dynamics on electronically excited states. The branching-ratio control is achieved with linearly chirped laser pulses, utilizing the different chirp dependence that various groups of final molecular states display for their post-pulse population. Our joint experimental and theoretical study establishes the feasibility of high degree coherent control over quantum molecular dynamics that is initiated by femtosecond photoassociation of thermal atoms

    Sensitivity of Neurospora crassa to a Marine-Derived Aspergillus tubingensis Anhydride Exhibiting Antifungal Activity That Is Mediated by the MAS1 Protein

    No full text
    The fungus Aspergillus tubingensis (strain OY907) was isolated from the Mediterranean marine sponge Ircinia variabilis. Extracellular extracts produced by this strain were found to inhibit the growth of several fungi. Among the secreted extract components, a novel anhydride metabolite, tubingenoic anhydride A (1) as well as the known 2-carboxymethyl-3-hexylmaleic acid anhydride, asperic acid, and campyrone A and C were purified and their structure elucidated. Compound 1 and 2-carboxymethyl-3-hexylmaleic acid anhydride inhibited Neurospora crassa growth (MIC = 330 and 207 μM, respectively) and affected hyphal morphology. We produced a N. crassa mutant exhibiting tolerance to 1 and found that a yet-uncharacterized gene, designated mas-1, whose product is a cytosolic protein, confers sensitivity to this compound. The ∆mas-1 strain showed increased tolerance to sublethal concentrations of the chitin synthase inhibitor polyoxin D, when compared to the wild type. In addition, the expression of chitin synthase genes was highly elevated in the ∆mas-1 strain, suggesting the gene product is involved in cell wall biosynthesis and the novel anhydride interferes with its function
    corecore